

A Developers Journey From Oracle EBS Forms

To Oracle EBS ADF Pages

Author: Thomas Korbecki

Tom Korbecki has worked with Oracle Applications for more than 15 years. His first

assignment on Oracle Applications project was to develop custom applications in Release

10. He currently is solution architect/developer that designs and develops versatile,

customer-centric solutions for Oracle Application Products.

White Paper Presentation

OAUG Collaborate 2013

Denver, Colorado

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 2

Abstract

This presentation will explain my journey from an Oracle EBS Forms Developer to an

Oracle ADF Pages Developer. My journey starts as an experienced Oracle Forms

Developer that is starting a new Oracle ADF application with no knowledge of Oracle

ADF “skill set” and ends with supporting an ADF application. Prior to starting this new

Oracle ADF application, I had attended some formal Java education training classes, but

that was ten years ago so I only remember concepts.

This white paper will highlight the skill sets required to build your ADF application,

steps required to set up your development environment, basic navigation of the Oracle

JDeveloper software, building an ADF application with comparison to Oracle Form

development and finally deploying that application in a WebLogic /Oracle EBS

environment.

Objective
1. What are the challenges with transitioning from Oracle Forms to Oracle ADF?

2. How to learn the required programming skill set to build ADF applications?

3. What are the basic ADF concepts?

4. Provide side by side comparisons between Oracle Forms and Oracle ADF.

5. How to deploy an application in a Weblogic / Oracle EBS environment?

6. Provide links to relevant websites explaining key concepts.

What are the challenges associated with the transition from

Oracle Forms to Oracle ADF?

The same basic building blocks required in Oracle Forms development are still required

with Oracle ADF development. The basic building blocks include gathering the

requirements, designing the application User Interface (UI) and Data Model, building the

application and finally releasing the application in a production environment; however,

there are new challenges encountered along the way.

Your first challenge will be designing your new application because it will take time and

experience to understand the ADF frame work of Model, View, Controller. The ADF

framework separate the database layer (Model) from the UI layer (View) while

introducing a new navigation concept called a Task Flow (Controller).

Task Flow is a modular and reusable unit of business navigation between views and non-

visual activities like routers and methods. Task flow can be compared to an Oracle EBS

workflow. An Oracle EBS workflow can execute PL/SQL code and route a transaction,

whereas, an ADF Task flow can execute Java code, route a transaction as well as call

other ADF Pages or call another Task Flow.

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 3

Your second challenge will be navigating within the JDeveloper software and selecting

the correct set JDeveloper configuration for your ADF application. The confusion is due

to JDeveloper being a multipurpose development tool and ADF is just one of tools within

the same software.

For comparison, it would be like Oracle combining Oracle Forms, Oracle Reports and

Oracle Workflow into one common development tool. When you start your new

development task, the Developer has to select correct configuration so the development

software only offers the tools available for that configuration.

Your third challenge will be learning the Java programming language and how to

research and use the pre-built Java APIs. It will take time to build your understand of the

most commonly used Java APIs and Oracle specific APIs. I would compare it to learning

how to research and use the correct Oracle EBS public APIs. For non-Java Developers, it

is initially overwhelming; however, it is only a matter of time before it all makes sense.

Your final challenge will be deploying and administering your ADF applications in the

WebLogic Server. JDeveloper provides two ways to deploy ADF applications: 1)

Deploy directly from the JDevloper application; 2) Deploy using and Enterprise

Application Archive (EAR File). In addition, basic navigation skills are required for the

WebLogic console & enterprise manager screens.

How to learn the required programming languages and software

tools to build application in ADFs?

The most difficult and frustrating part of my journey was trying to find the equivalent

Oracle Forms action in ADF. Initially, it might take hours or days trying to understand

how to perform a certain task in ADF. I would rely on my database knowledge to solve a

certain problem in PL/SQL when the same task could have been performed in ordinary

Java. In order to help minimize the learning curve, I will attempt to draw comparisons

between Oracle Forms (PL/SQL) and ADF (Java).

Oracle Forms programming language is based on PL/SQL; whereas ADF is based on

Java. Most ADF applications will require some programming so a basic understanding of

Java or Groovy (Java-like Syntax) is required. Most of the programming concepts

transfer from PL/SQL to Java, but the syntax will be different. Based on my experience,

the following Java topics/concepts are required to build basic ADF applications:

Primitive data types

Data types / variables

Strings

Variable scope

Operator

Ternary operator

Relational and conditional operations

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 4

If statement

Loops

Arrays / Lists

Maps

What causes Java null pointer exception

Try Catch Finally

Logging

Import statements

These concepts can be found in many online sites and here are a couple of sites for

reference:

Oracle Java Tutorial http://docs.oracle.com/javase/tutorial/

IBM Java Tutorial http://www.ibm.com/developerworks/java/tutorials/

j-introtojava1/j-introtojava1-pdf.pdf

Oracle provides pre-built Java APIs just like Oracle EBS provides pre-built PL/SQL

APIs, so take advantage of them. In order to use the pre-built Java APIs, the class needs

to be added to the code via the import statement. Oracle’s pre-built Java APIs can be

referenced at this link:

Java APIs http://docs.oracle.com/javase/6/docs/api

Oracle APIs oracle.jbo.* package

In addition to Java programming language, there is a Java-like scripting language called

Groovy. Groovy is a dynamic language for the Java platform that is checked and

executed at runtime as opposed to Java, which is checked at compile-time. In ADF

applications, Groovy is typically used to validation routines, setting a database sequence

on a table, used to build error messages, referencing built-in calls like setting current date

& time (i.e. sysdate), and aggregate functions in view objects (i.e. sum, count, min, max,

etc.).

Introduction to Groovy

Support in JDeveloper and

Oracle ADF 11g

http://www.oracle.com/technetwork/developer-

tools/jdev/introduction-to-groovy-128837.pdf

ADF Concepts

What is the ADF Framework?

Oracle Application Development Framework (ADF) is a Java-based development tool

(much like Oracle Forms is a PL/SQL-based tool) designed to take full advantage of Java

Enterprise Edition or Java EE. ADF Technology simplifies interaction with “Java” EE

and Oracle’s Fusion Middleware.

http://docs.oracle.com/javase/tutorial/
http://www.ibm.com/developerworks/java/tutorials/j-introtojava1/j-introtojava1-pdf.pdf
http://www.ibm.com/developerworks/java/tutorials/j-introtojava1/j-introtojava1-pdf.pdf
http://docs.oracle.com/javase/6/docs/api
http://www.oracle.com/technetwork/developer-tools/jdev/introduction-to-groovy-128837.pdf
http://www.oracle.com/technetwork/developer-tools/jdev/introduction-to-groovy-128837.pdf

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 5

M
e

ta
D

a
ta

 S
e

rv
ic

e
s
 (

M
D

S
)

Desktop

ADF Swing Office

Browser-Based

JSP JSF ADF Faces
View

Controller

Browser-Based

Struts JSF/ADF Task Flow

ADF Bindings Model

Java EJB BAM BPEL

Top Link

Web

Services

ADF BC BI Essbase Portals
Business

Services

Relational

Data

XML

Data

Legacy

Data

Package

Applications
Data

Services

 The view layer contains the UI pages used to view or modify that data

 The controller layer processes user input and determines page navigation

 The model layer represents the data values related to the current page

 The business service layer handles data access and encapsulates business logic

ADF has many components, but the ADF BC (Data & Links) and the ADF Faces (UI)

can be thought of as Form Data Blocks (Data & Relationships) and Canvases (UI).

What is the Oracle Forms Framework?

Java UI Renderer

P
L

/S
Q

L

E
n

g
in

e

Block

Record Manager

SQL Interface

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 6

Compare ADF vs Oracle Framework

Java UI Renderer

D
a

ta

L
o

g
ic

Data Block Definition

Record Manager

SQL Interface

Business Services

Model

Controller

Rich Clients
Web and Wireless

Clients

Navigation Logic

UI Logic Block UI Definition

ADF Oracle Forms

View (UI)

Contoller

Model

Model

Entity object – For the context of this white paper, an entity object is a database table on

which DML operations are performed. In Oracle forms, this is the Record Manager.

The full ADF definition of an entity object is business components that encapsulate the

business model, including data, business rules (When-Validate-Record), and persistence

behavior for items/columns that are used in your application. Entity object definitions

map to single objects in the data source and it is where DML operations are performed.

In most cases, it is a database table or snapshot in a database, but it can be spreadsheet,

XML or a flat file.

View object – For the context of this white paper, a view object can be a single database

table or a group of database tables linked together via relationships (i.e. parent table &

child table) or a view only database view that can be used in a “List of Values” (LOV).

In Oracle Forms, this could be considered the Data Block. For example, in a Forms Data

Block, we specify what columns we are using and we can also set the “where by” or

“order by” clause.

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 7

The full ADF definition of a view object is a group of business components (ie. Database

columns) that are a collection of data from a data source. It can represent an individual

table or a group of tables as well as a database view used by a LOV. View objects must

have a process for retrieving data from the data source (database) and a method of

retrieving the data (SQL based query). Oracle ADF Business Components can

automatically use JDBC API to pass this query to the database and receive the result.

View Link– For the context of this white paper, a view link is a relationship between two

view objects that are joined by one or many database columns. This enforces business

rules related to the data.

Association “Link” – This is a relationship between two entity objects, which can be

represented by a primary – foreign key relationship in a database. If the relationship is

defined in the database, then ADF will automatically build an association link between

the two entity objects. If the relationship is not defined, then you have the option to

create it manually.

The Data Model is somewhat comparable to Data Blocks in Oracle Forms. The Data

Block controls create, read, update and delete (CRUD) operations as well as link the UI

data fields.

View

For the basis of the white paper, the View layer is the user interface that displays data

from the Model layer. The View layer in its simplest form could be a page with input

fields, buttons, input boxes and tables to display data; however, ADF provides other

components that allow for the creation of rich and reusable user interface.

ADF Faces provides over 100 rich components, including hierarchical data tables, tree

menus, in-page dialogs, accordions, dividers, and sortable tables. ADF Faces also

provides ADF Data Visualization components, which are Flash- and SVG-enabled

components capable of rendering dynamic charts, graphs, gauges, and other graphics that

can provide a realtime view of underlying data. Each component also supports

customization and skinning, along with internationalization and accessibility.

In order to understand these components, Oracle provides a tool called “ADF Faces Rich

Client Demos”. The tool is located at:

Oracle ADF Faces Rich Client http://jdevadf.oracle.com/adf-richclient-

demo/faces/index.jspx

Controller

http://jdevadf.oracle.com/adf-richclient-demo/faces/index.jspx
http://jdevadf.oracle.com/adf-richclient-demo/faces/index.jspx

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 8

The Controller layer processes user input and determines page navigation. JDeveloper

provides a declarative way, or Task Flow, to pass application control between different

types of activities such as pages, methods within managed beans, transaction support,

save points, or calls to other task flows. In terms of Oracle Forms, it is the ability to

navigate within your application using PL/SQL code to navigate to a block

(GO_BLOCK) or to open another form (CALL_FORM).

There are two types of Task Flows:

Unbounded Task Flow is essentially the entry point into your application or home page.

There can be only one unbounded task flow per application

Bounded Task Flow is a modular and reusable application flow with a defined entry

point (i.e. default activity), but can have zero to many exit points. Additional information

about Task Flows is as follows:

Task Flow Design Fundamentals (An

Oracle White Paper April 2011)

http://www.oracle.com/technetwork/developer-

tools/jdev/adf-task-flow-design-132904.pdf

Oracle® Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework 11g Release 1 (11.1.1.6.0)
- Section 14 Getting Started With Task Flows http://bit.ly/adfdevguide111160s14
- Section 16.4 Sharing Data Control Instances http://bit.ly/adfdevguide111160s164
- Section 18 Introduction to Complex Task Flows http://bit.ly/adfdevguide111160s18
- Section 18.3 Managing Transactions http://bit.ly/adfdevguide111160s183

Additional Concepts

Application Module (AM)

This is a collection of business rules and transactions (view objects and view links

defined in the Model layer) that are related to a certain function or use case. When

building your application, the view and view links need to be added to a container or

application module (AM), so they can be exposed as “data controls” and consumed by

the View layer.

An additional feature of ADF is the ability to expose the collection of views as a service

so it can be consumed by other applications; thus reusing code and enforcing same

business rules across multiple applications.

As for Oracle Forms, the Form itself is an application module because it is a collection of

business rules and transactions that are combined together to archive a business

requirement.

What is a Data Binding?

http://www.oracle.com/technetwork/developer-tools/jdev/adf-task-flow-design-132904.pdf
http://www.oracle.com/technetwork/developer-tools/jdev/adf-task-flow-design-132904.pdf

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 9

Data binding is a connection between UI components to data control exposed via the

application module. Once the UI consumes a view object or method exposed in the data

control, a binding is created between the Model layer and View layer. The following

diagram illustrates the data binding concept.

Object Scope Lifecycles

When you run your application, parameters are usually passed to the application and that

data is stored in an object scope. Once you place an object in a scope, it can be accessed

from the scope using an expression language. For example, you might create a managed

bean named myPageRequestBean and define the bean to live in the Request scope. To

access that bean, you would use the expression language #{requestScope.

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 10

myPageRequestBean }. For a Forms Developer, this is a way of calling the procedure or

function in a database package.

There are three types of scopes in a standard JSF application:

applicationScope The object is available for the duration of the application.

sessionScope The object is available for the duration of the session.

requestScope The object is available for the duration between the time an

HTTP request is sent until a response is sent back to the

client.

In addition to the standard JSF scopes, ADF Faces provides the following additional

scopes:

pageFlowScope The object is available as long as the user continues

navigating from one page to another. If the user opens a

new browser window and begins navigating, that series of

windows will have its own pageFlowScope.

backingBeanScope Used for managed beans for page fragments and

declarative components only. The object is available for

the duration between the time an HTTP request is sent

until a response is sent back to the client. This scope is

needed because there may be more than one page fragment

or declarative component on a page, and to avoid collisions

between values, any values must be kept in separate scope

instances. Use backingBeanScope for any managed bean

created for a page fragment or declarative component.

viewScope The object is available until the ID for the current view

changes. Use viewScope to hold values for a given page.

Object scopes are analogous to global and local variable scopes in programming

languages. The wider the scope the higher the availability of an object. During their

lifespan, these objects may expose certain interfaces, hold information, or pass variables

and parameters to other objects.

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 11

Relationship Between Scopes and Page Flow

For your applications, you will most likely choose the pageFlowScope to store your Task

Flow parameters. These variables are stored in a hash map that can be referenced in the

UI managed bean or in the Application Module Java Methods. Referencing the hash map

object related to a specific object scope is one way to reference variables between the

Model layer and View layer in your application.

Expression Language

In Java Server Faces (JSF), you can use a simple expression language (EL) to access

application data stored in Java Bean components. The syntax of EL is as follows:

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 12

 #{<Binding or Bean Name>.<Variable/Method> <Operation>}

For example, if we want to display a credit card number field only when the payment

method is “Credit Card” then we could apply the following EL to the visible property

on the credit card field in the UI:

#{bindings.PreferredPaymentMethod.attributeValue == 'Credit Card'}

In the reference document below, the tutorial uses the $ sign instead of the # sign. For

our ADF development, we will be using the # sign. The following explains the

difference between the $ and # sign.

$ - $ syntax executes expressions eagerly/immediately, which means that the result is

returned immediately when the page renders.

- # syntax defers the expression evaluation to a point defined by the implementing

technology. In general, JSF uses deferred EL evaluation because of its multiple lifecycle

phases in which events are handled. To ensure the model is prepared before the values are

accessed by EL, it must defer EL evaluation until the appropriate point in the lifecycle. I

have provided a EL tutorial:

The J2EE 1.4

Tutorial

http://docs.oracle.com/javaee/1.4/tutorial/doc/JSPIntro7.html

Note: Some Developers try to avoid using expression language statements because the

statement is checked at runtime as opposed to a managed bean where the statement is

checked at compile time. It is similar to calling dynamic SQL where you don’t know the

value of the variable you are referencing until runtime.

Managed Bean

At some point in your application, you will need a more powerful tool than expression

language (EL) to programmatically modify the UI or control the behavior or your

application so you will need to create a managed bean. A managed bean is a reusable

software component for Java that represents a manageable resource including

components, applications or devices. They are used to encapsulate many objects into a

single object (the bean), so that they can be passed around as a single bean object instead

of as multiple individual objects.

Managed beans are Java classes that you register with the application using various

configuration files. When the JSF application starts up, it parses these configuration files

and the beans listed within them are made available. The managed beans can be

referenced in an EL expression, allowing access to the beans’ properties and methods.

http://docs.oracle.com/javaee/1.4/tutorial/doc/JSPIntro7.html

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 13

Below is an example of a change listener method that is controlled by a managed bean:

 public void PreferredPaymentMethodChangeListner(ValueChangeEvent valueChangeEvent) {

 valueChangeEvent.getComponent().processUpdates(FacesContext.getCurrentInstance());

 Integer newValue = (Integer) valueChangeEvent.getNewValue();

 BindingContext bctx = BindingContext.getCurrent();

 BindingContainer bindings = bctx.getCurrentBindingsEntry();

 // Get The List Of Values Related To The Selected Payment Method

 JUCtrlListBinding list =(JUCtrlListBinding) bindings.get("PreferredPaymentMethod");

 // Find The Selected Values In The List Of Values

 Row selectedRow = (Row)list.getSelectedValue();

 String selectedValue = list.getAttributeValue().toString();

 if (selectedValue.equals(SiConstants.CreditCard)){

 // Turn On Credit Card Panel Group

 this.creditCardPanelGroupLayout.setVisible(Boolean.TRUE);

 } else {

 // Turn off Credit Card Panel Group

 this.creditCardPanelGroupLayout.setVisible(Boolean.FALSE);

 }

 }

As comparison to Oracle Forms, a managed bean would contain all the PL/SQL related

UI behavior. For example, we can display or hide the credit card number field based on a

When-Validate-Item of the payment method field.

Note: When you create your managed bean you need to specify a scope for the bean. (See

Object Scope Section).

Where Should Your Custom Code Reside?

There are various Java classes and “levels” to write your custom code and based on the

requirement it should be written at a certain “level”. When I first started building

applications, I was never quite sure where to place my custom code. I used the following

guide to help me determine where to write the code.

Location Guide

Application Module Application module class as the place where you can write

your service-level application logic.

 Execute database command or block of PL/SQL

 Access Existing View Objects

 Access DBTransaction Object

EntityImpl Class The EntityImpl class is the base class for entity objects,

which encapsulate the data, validation rules, and business

behavior for your business domain objects.

 Get an attribute

 Set an attribute

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 14

Note: Add custom code to set a value after it is retrieved

from the database and before it’s passed to the view object or

to override the view object value before storing the value into

the database.

ViewObjectImpl Class A view object is a base class for view objects

 Set Where By Clause

 Set Order By Clause

For Form Developers, this is where your block triggers exists.

Note: I have also seen Developers set the Where By and

Order By in an Application Module method

ViewRowImpl Class A view object is a base class for view row objects

 Get Attribute

 Set Attribute

Note: I normally use this class to set transient values

attributes before they are rendered to the page and to process

values from the page before passing the row-set back to the

Entity class.

Managed Bean This is where you store all your UI based code that controls the

page as well as call methods in the application module.

 Initialize code for your session

 Call methods defined in the application module

 Conditionally Rendering

 Set variables

For Form Developers, this is where all your UI events triggers

Note: Oracle provides a comprehensive list of what typical code is placed in each area:

Document Chapter

Developer's Guide for Oracle

Application Development

Framework

Most Commonly Used ADF Business

Components Methods

Debugging (JDeveloper Debug / SOP / ADF Logger)

ADF and JDeveloper provide several ways to debug your code.

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 15

1. System.out.println, or SOP is equivalent to dbms_output in PL/SQL. It provides

debugging capability while developing your application but ADF Logger should

be used when the application is deployed to production. By default the SOP

messages are displayed in the Log Window (Figure A: JDeveloper Navigation).

2. ADF Logger is a logging mechanism, which is built into the ADF framework. It is

a wrapper around the java.util.Logging APIs with a few convenience methods

thrown in, and most importantly, some specific features integrated into both

JDeveloper and Enterprise Manager.

3. The JDeveloper tool has a few ways to debug your application.

a. When you want to debug your application in detail then add the following

string to your application: -Djbo.debugoutput=console and run your

application in debug mode. The debug messages will be displayed in the

Log Window (Figure A: JDeveloper Navigation).

b. ADF Declarative Debugger provides declarative breakpoints that you can

set at the ADF object level (such as task flows, page definition

executables, method and action bindings, ADF lifecycle phases), as well

as standard Java breakpoints. How to use the debugging utility can be the

entire presentation, so reference the ADF Application Developers Guide –

Chapter “31.7 Using the ADF Declarative Debugger” to learn how to use

this feature.

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 16

Naming Conventions

You should determine how to name your packages and the granularity.

Example Base: com.<application short name>.<project name>

Sample: com.xx.myproject

UI

Default Package com.xx.myproject.view

Task Flows com.xx.myproject.view.pageflows

Pages com.xx.myproject.view.pages

Page Fragments com.xx.myproject.view.pagefrgments

Managed Beans com.xx.myproject.view.bean

Overriden Component Class com.xx.myproject.view.overriden

Page Definitions com.xx.myproject.view.pagedefs

Model

Default Package com.xx.myproject.model

Entities com.xx.myproject.model entities

Associations com.xx.myproject.model.assoc

View Links com.xx.myproject.model.vo.link

Updatable Views com.xx.myproject.model.vo

Read Only Views com.xx.myproject.model.vo.readonly

Application Module (AM) com.xx.myproject.model.am

Diagram com.xx.myproject.model.diagram

How to set up your local PC to develop ADF applications?

Now that you have been introduced to the concept of ADF and JDeveloper, it is time to

set up your local PC. You can find the download page by referencing the JDeveloper

home page:

Oracle JDeveloper Main

Page

http://www.oracle.com/technetwork/developer-

tools/jdev/overview/index.html

What Version?

There are several versions of JDeveloper to download, so choose the correct version for

your environment. There is a one-to-one relationship between JDeveloper and Weblogic

Server and you have to install a JDeveloper with the same ADF runtime version as the

Weblogic Server. There is no backward or forward compatibility. EBS Forms

http://www.oracle.com/technetwork/developer-tools/jdev/overview/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/overview/index.html

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 17

Developers are familiar with this concept because they have to install the compatible

Oracle Forms software related to their EBS technology stack.

If you are NOT planning on deploying to a Weblogic Server (WLS), then download the

latest JDeveloper version. In all other cases, reference the compatibility link below:

ADF Runtimes vs WLS versions

as of JDeveloper 11.1.1.6.0

https://blogs.oracle.com/onesizedoesntfitall/ent

ry/adf_runtimes_vs_wls_versions

Installation

Oracle provides detailed instructions on how to install a local version of. I will just

highlight a few steps:

1. Software - Download the correct version of the software (See What Version?)

2. Prerequisites – Administrative Access

3. Installation is quite simple

Click On jdevstudio11122install.exe

https://blogs.oracle.com/onesizedoesntfitall/entry/adf_runtimes_vs_wls_versions
https://blogs.oracle.com/onesizedoesntfitall/entry/adf_runtimes_vs_wls_versions

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 18

It is recommended you always install each JDeveloper installation in its own

directory.

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 19

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 20

If you need additional installation references, then refer to the following references:

Oracle Install Guide – Screen

Shots

http://docs.oracle.com/cd/E35521_01/install.11123

0/e17074/toc.htm

Oracle Install Guide – Video https://blogs.oracle.com/workingwithadf/entry/inst

alling_and_configuring_jdeveloper_with_adf

Building Your First Applications

Now that you have installed JDeveloper, I would take a few hours navigating within the

tool and review the Oracle tutorial on how to build an ADF application.

1. Understand basic navigation within the JDeveloper tool.

Figure A: JDeveloper Navigation

http://docs.oracle.com/cd/E35521_01/install.111230/e17074/toc.htm
http://docs.oracle.com/cd/E35521_01/install.111230/e17074/toc.htm
https://blogs.oracle.com/workingwithadf/entry/installing_and_configuring_jdeveloper_with_adf
https://blogs.oracle.com/workingwithadf/entry/installing_and_configuring_jdeveloper_with_adf

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 21

Here are some navigation short-cuts:

Ctrl + Mouse Click Go To Declaration

Ctrl + - Go To Class

Ctrl + Alt + - Go To File

Alt + Home Locate file in app navigator

App Navigator Find as you type (Comparable to Oracle Forms)

Ctrl + F Find

Ctrl + Shift + F Find In Files

Ctrl + Alt + H Highlight Fields

Highlight is a great way to find text within in your custom code and I use this

feature all the time.

2. Review an Oracle tutorial on how to build your first application. I referenced this

URL multiple times when I was building the first applications.

Developing Rich Web

Applications With Oracle ADF

http://docs.oracle.com/cd/E18941_01/tutorials/jdtut

_11r2_55/jdtut_11r2_55_1.html

 Log Window

 Structure

 Window

Data Control

Panel
 Window

Property

Inspector

Comparable to

Forms

Property Pallet

Projects Panel

Comparable to the
Forms Object

Navigation

Tool Bar

Component Pallet

Somewhat

Comparable to

Forms Canvas Tool

Pallet

UI Page

Comparable to

Forms Canvas

Highlight Tool

http://docs.oracle.com/cd/E18941_01/tutorials/jdtut_11r2_55/jdtut_11r2_55_1.html
http://docs.oracle.com/cd/E18941_01/tutorials/jdtut_11r2_55/jdtut_11r2_55_1.html

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 22

Now it is time to start building your first application. Once you start JDeveloper, it will

prompt you to select a role. A role is a way to only display tools and components related

to your project. Select the default role until you have researched how this option works.

Create a new application:

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 23

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 24

Once you click on finish, the application will set up the directory structure on your file

system and open up the application with a Quick Start Guide. This is comparable to the

Oracle Forms Wizard that helps you build your application. I would recommend using

the ADF Quick Start Guide to build the first applications. As you learn the JDeveloper

tool, you will probably build your application without the Wizard.

Figure B: File Structure

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 25

Quick Start Guide

Now it is time to back up your application. If you ever worked with Oracle Reports or

Oracle Forms, the first thing you learn is to back-up your code often. This same holds

true for Oralce ADF. There are so many additional options that you are bound to make a

mistake that will require you to restore from a previous version. The simple way to back

up your code is to copy your application directory structure (Figure B: File Structure) to a

back-up directory. Another way is to use a Third-Party tool, Subversions, which is

integrated into JDeveloper.

In this next section, I will attempt to draw some comparisons from ADF to Oracle Forms.

Database Connection

JDeveloper and Oracle Developer Forms both require a database connection to access a

database schema. ADF also has the ability to connect to multiple databases as well as to

other sources of data (for example, BAM, BPM MDS, Content Repository, External

Application, RIDC, SOA-MDS, URL, Worklist, WSIL). For this presentation, we are

only concern, with a database connection to a single database and schema.

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 26

JDeveloper Oracle Forms Developer

Build Business Services (Entity Objects / Views / Links / Application Module)

ADF and Oracle Form applications are typically built to assist in managing data that

resides in a database. Both ADF and Oracle Forms framework support, create, update,

read and delete (CRUD) operations; however, there is one major difference. ADF

automatically handles CRUD operations; whereas Oracle Forms uses the Forms record

manager to store records retrieved from the database but it is the responsibility of the

Developer to manage, create, update and delete (CUD) operations. In Oracle Forms,

CUD operations are executed using Data Block triggers and PL/SQL code.

In ADF, CRUD operations are performed on entity objects or database tables. This is the

reason why ADF requires a separate updatable view objects to be used by the UI. Entity

objects are used by the ADF framework to automatically handle CRUD operations and

view objects are the mechanism to maintain the data in your user interface. There are

two types of view objects: Updatable and Non Updatable. If the view object is updatable,

then there will be an entity object definition defined in that view object. Any view object

that needs to be consumed by UI (pages) will be packaged into an application module so

it can be exposed to your UI (pages).

In terms of Oracle Forms, it can be argued that each Oracle Form application contains a

virtual application module because it is a collection of view objects that are implicitly

exposed to the user interface or canvases.

Creating Business Service Objects

In order to assist you in creating Entity and View objects, JDeveloper has created various

wizards to reduce the time to build your application. When you need to create an Entity

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 27

object, place your cursor on the Model, or “MyProjectModel” and right click and select

“New”. A pop-up gallery window will then appear. Select Business Tier  ADF

Business Components  “Create Entity Object Wizard” to launch the entity wizard.

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 28

Since a primary key is not defined in the database, select primary key.

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 29

Perform the same steps for oe_order_lines_all

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 30

When you are done, your project should look like

In Oracle Forms, database view objects perform roughly the same function as an ADF

view object. It is the mechanism to maintain the data in your user interface. As with

ADF framework, Oracle Forms framework has wizards to create your Data Block (view

objects):

Create data blocks (entity & view objects).

We have not exposed

any view objects so

nothing is showing

under data controls

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 31

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 32

Perform the same steps for oe_order_lines and when you are done the Forms navigator

screen should look like

In ADF, the next step is to create a master-child relationship between the headers and

lines table. The relationship is connected by a database column or header_id. ADF

supports two different styles of master-detail relationship:

Association This is a master-detail relationship defined at the entity level and since it is

defined at the entity level, each entity object can reference each other in

CRUD operations. As a general rule, create an association link when you

need to enforce business rules, create or delete records in a master detail

relationship. Note: If you have primary-foreign key relationship defined in

your database, then an association link will automatically be created for you.

View Link This is a master-detail relationship defined at the view level and is mainly

used to sync up blocks of data in your application. If you are creating a

master-detail relationship screen in your application, then you should create a

view link because it supports automatic master-detail synchronization.

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 33

Here are the steps to create an association link

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 34

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 35

Here are the steps to create a view link:

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 36

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 37

When you are done defining the links, your project should look as follows:

In Oracle Forms, we do not have a distinction between table based and view link master-

detail relationship. We have a single relationship, which is a combination of an

association and view link. It supports auto-query of the detail block and enforces cascade

deletes.

Create a relationship between headers and lines (association & view links)

Once the relationship is created, Oracle Forms will automatically add code to enforce the

relationship.

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 38

Now that we have our business relationships defined, we need to apply a common

business functionality to help our Users understand the data. One such business

component is a list of values (LOV) component, which translates database Ids to readable

values.

Here is an ADF example of creating a list of values related to the inventory_item_id on

the sales order line table. The database id should be translated to a SKU# or product

code. ADF provides a wizard to create a read-only view object. The wizard steps our

displayed below:

1. Create a read-only view

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 39

2. Add your SQL statement with a parameter

3. Define your parameter

4. Identify what column in your view is the primary key

Click Finish

5. This next step needs to associate the list-of-values view to the attribute, or

database column defined on the sales order line view object or database table. In

terms of ADF, this is called creating a view accessor to your sales order line or

view object. The definition of a view accessor is the mechanism that lets you

obtain the full list of possible values from the row-set of the data source view

object.

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 40

Once the view accessor is added to the line view object, it will be available in the

“List Data Source” drop down list. Select the list data source and complete the

mapping.

After the list of value is attached, you will see the list-of-values in the attribute

window.

Add Item View

Accessor To Lines

View Object

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 41

This is very similar to creating a list of values in Oracle Forms. First, a record group

(view object) needs to be created. Then we need to create a list of values object, which is

an explicit mapping of the record group result set to a data block definition. Lastly, we

need to link the list of values definition to a specific field in the data block.

For my Oracle Forms example, I did not use the list-of-values wizard because I want to

show the same type of steps as in ADF.

1. Create a record group which is equivalent to a read-only view object in ADF

2. Create a list of values (LOV) mapping between the definition of the result set and

the Data Block field.

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 42

3. Link the list of values to a data block field

Once we have all our business services (entity objects, view objects, links and list of

values objects) completed, our next step is to group the view objects together into

application module so they can be exposed to the View layer. Here are the steps to

create an application module in ADF:

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 43

Once you shuffle the Header and Line, click finish.

When you are done defining the application module, refresh the “Data Controls” window

and your project should look as follows:

For Oracle Forms, there is no action required to expose the Data Blocks to the user

interface because the application module is implicitly exposed to the user interface or

canvas.

Refresh

View Objects Are Now

Available To UI

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 44

Initialize Application Session Values

For either Oracle Forms or ADF applications, we need to initialize the session when the

application is launched. The purpose of the initializing is to prepare the application for

the User who is about to enter into the application. In Oracle Forms, this is performed by

the “When-New-Form” trigger which sets session specify values like inventory

warehouse, operating unit, the correct operating unit, initialize descriptive flexfields or

set the initial visual canvas. In ADF, the same actions can be performed by calling a

managed bean method or an application module method. As a refresher, a method is a

collection of Java code with a sole purpose to carry out a task.

In a real-life ADF application, we would set session specific variables within the

initialization method. For example, based on a given users responsibility, we could set

visible and edit privileges within the application, specify an operating unit, determine

what UI page should be rendered and place scope specific variables into Java Map so

they can be referenced in other parts of the application.

Initializing your application is tightly coupled with controlling the flow of your

application, so I will explain how you initialize your application in the following section

(Design Application Flow).

Design Application Flow

This next section compares how you control the flow of your application in Oracle Forms

versus ADF. In Oracle Forms, we initially control the flow of the application by setting

the “First Navigation Data Block” in project properties pallet.

The initialization of the Oracle Forms session and the option to set the initial canvas is set

by the “Pre-Form” or the “When-New-Form” trigger. Here is an example of some

PL/SQL code that is called by the form level trigger WHEN-NEW-FORM-INSTANCE:

PROCEDURE when_new_form_instance

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 45

IS

 win_msg VARCHAR2(2000);

 l_org_id NUMBER := TO_NUMBER(FND_PROFILE.VALUE('ORG_ID'));

 l_user_id NUMBER := TO_NUMBER(FND_PROFILE.VALUE('USER_ID'));

 l_percision NUMBER := NULL;

 l_name hr_operating_units.name%TYPE;

BEGIN

/*

|| Set First Navigation Block

*/

 FIRST_NAVIGATION_BLOCK (‘OE_ORDER_HEADERS’);

/*

|| Assign Valued To Control Block

*/

 :CONTROL.USER_ID := l_user_id;

/*

|| Set Operating Unit Name

*/

 SELECT hou.name

 INTO l_name

 FROM hr_operating_units hou

 WHERE hou.organization_id = l_org_id;

/*

|| Set Window Titles

*/

 win_msg := 'Order Maintenance' || ' (' || l_name || ')';

 set_window_property('MAIN_WIN', TITLE, win_msg);

 /*

 || Get and Set Percision

 */

 SELECT fc.precision

 INTO l_percision

 FROM hr_operating_units hou,

 gl_sets_of_books gsob,

 fnd_currencies fc

 WHERE hou.organization_id = l_org_id

 AND hou.set_of_books_id = gsob.set_of_books_id

 AND gsob.currency_code = fc.currency_code;

 :PARAMETER.SOB_PERCISION := NVL(l_percision, 2);

/*

|| Set DFFs

*/

 FND_DESCR_FLEX.DEFINE

 (

 block => 'OE_ORDERS_HEADERS',

 field => 'DF',

 appl_short_name => 'ONT',

 desc_flex_name => '<some value>',

 title => '<some value>'

);

END when_new_form_instance;

For Oracle Forms, the Developer can use hot-keys, GO-BLOCK and CALL-FORM

options to control the flow of your application. The navigation coding is buried within

forms triggers and PL/SQL code and sometimes can be difficult to debug as compared to

Oracle ADF, which has a tool to visually control your flow of the application.

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 46

In ADF, you control the flow of your application by using a task flow. A task flow is a

visual way to control the flow of your application. When you initially create your

bounded task flow object, the task flow will be completely empty and it is your

responsibility to visually define your flow. Once you launch the task flow wizard, you

will see the following:

In ADF, we initialize our application by adding a “Method Call” activity in the task flow

and we set this activity as the default. The Method Call activity will reference a managed

bean method or application module method. In this example, I am referencing a managed

bean method.

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 47

In this example, I named the “Method Call” activity InitializeSalesOrderMethod and it

references a managed bean called initalizeScopeValues.

Here is a sample code that would be contained in the managed bean method. In this case,

we are referencing an application parameter, which is defined in your task flow. In

addition, it is calling an Application Module (AM) method that will initialize the EBS

database session variables.

 public void initalizeScopeValues() {

 System.out.println("Start - initalizeScopeValues");

 Map<String,Object> params = new HashMap<String,Object>();

 Map pfMap = AdfFacesContext.getCurrentInstance().getPageFlowScope();

 // These are task flow parameters which are similar to Oracle Form Parameters

 params.put("Warehouse", pfMap.get("pWarehouse"));

 System.out.println("Parameter - Warehouse: " + params.get("Warehouse"));

 // Get Session Values Like User Name

 SecurityContext context = ADFContext.getCurrent().getSecurityContext();

 String username = context.getUserName().toLowerCase();

 System.out.println("Variable - username: " + username);

Select Method Call

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 48

 //Call AM Method To Initalize Session Variables In The Model

 BindingContainer bc = BindingContext.getCurrent().getCurrentBindingsEntry();

 bc.getOperationBinding("setAMSessionVariables").execute();

 System.out.println("End - initalizeScopeValues");

 }

In order to reference an AM method, you first need to create an Application Module Java

class, add that method to the Application Module so it can be exposed via a Data

Controller, which in turn allows you to consume and bind that AM method to Method

Call Activity or UI Page. Here are the steps to create an AM Java Class that will hold

your setAMSessionVariables method:

Open the newly created Java Class and write your new method.
 public void setAMSessionVariables(){
 System.out.println("Start - setAMSessionVariables");

 String SessionWarehouseId = null;

 CallableStatement st =null;

 // Get the Page Flow Scope Variable From the Current Session And Assign It To A Session Variable

 SessionWarehouseId = ADFContext.getCurrent().getPageFlowScope().get("pfsWarehouseId").toString();

 // Set Warehouse Session Variable Which Can Be Use By Application Module / View Objects

 this.getSession().getUserData().put("pWarehouseId", SessionWarehouseId);

 System.out.println("End - setAMSessionVariables");

 }

Add the new method to the Client Interface.

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 49

Refresh your Data Control Panel and you will see that the method is now exposed and

can be consumed by the Method Call Activity in the View Layer.

The last set is to bind the exposed AM method, or “setAMSessionVariables” to your

Method Call Activity, or InitializeSalesOrderMethod.

Note: Once you drag and drop the exposed method onto the Method Call Activity, the

ADF framework will automatically create the binding for you.

Once you initialize your ADF application, the next step is to navigate to your first page.

In this example, I only have one method and one UI page so this is a very simplistic way

to demonstrate the initialization and navigation of an ADF application.

Drag and Drop Method

into the Icon.

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 50

In a real life ADF application, the task flow design can quite complex.

Application Parameters

In the previous section or Design Application Flow, I mentioned that ADF applications

can accept parameters. Parameters are defined as part of a task flow. In this example, I

created one required parameter that accepts the warehouse Id. The parameter value can

be retrieved by getting the value from the pageflowscope hash map object as

demonstrated in the previous session.

In Oracle Form, the application parameter is defined under the application and the

parameter value can be referenced by prefixing the variable with the key word

“parameter” or :PARAMETER.PWAREHOUSE

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 51

Designing Your UI Application

Translating most of the commonly used Oracle Forms UI components, such as modal and

non modal windows, canvas, stacked canvases, frames, input text items, labels, buttons,

tabs, current record indicator and multi-row block “Table” is straight forward. In Oracle

Forms, we have a very limited set of components as compared to ADF, so the challenge

is trying to understand all the new components and features available with ADF. In order

to help the Developer understand each component, Oracle provides a tool called “ADF

Faces Rich Client Demos”, or http://jdevadf.oracle.com/adf-richclient-

demo/faces/index.jspx.

In addition to hundreds of new UI components, ADF introduces the concept of reusable

pages or page fragments. Page fragments allow you to create parts of a page and a page

can be made up of one or more page fragments. When building your application,

determine if you have any common tasks that could take advantage of page fragments.

Another reason to use page fragments is to break down very large and complex pages so

it is easier to maintain.

In order to transition your current understanding of Oracle Form components, build a

simple master-detail project and practice using these ADF components and discovering

any new features by reviewing “ADF Faces Rich Client Demos”.

For additional reference, review an Oracle video that compares the differences between

Oracle Forms and ADF. This video is called “Redeveloping Oracle Forms in ADF” ADF

Insider Essentials.

Redeveloping Oracle Forms in ADF http://www.youtube.com/watch?v=TiqbW1CAMMc

Deployment

http://jdevadf.oracle.com/adf-richclient-demo/faces/index.jspx
http://jdevadf.oracle.com/adf-richclient-demo/faces/index.jspx
http://www.youtube.com/watch?v=TiqbW1CAMMc

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 52

Neither ADF nor Oracle Forms create a stand-alone executable; therefore, the compiled

source code needs to run on some type of server that can interpret the compile code. In

the case of Oracle Forms, we typically use the Oracle’s Enterprise Business Suite

technology stack to run our compiled application. As for ADF applications, we need a

Java EE-compliant server, such as a WebLogic Server (WLS) to run our compiled ADF

application.

Deploying your application to a Java EE server requires two steps:

1. Prepare the deployment file. This step consists of creating a deployment file,

which consists of collecting all the supporting libraries into a Java archive

(JAR) file.

2. Copy the deployment file to the application server. In this step, you can use

either JDeveloper to install your application on the WLS server or you can

upload the JAR file to the WLS server and then use a WLS deployment tool in

the WLS console to install your application.

Here are a few deployment references:

Deploying Applications To

WebLogic Server Using JDeveloper

and WLS Console

http://www.quovera.com/whitepapers/downloads

/rmoug_2012_deployment_doc.pdf

FAQ for Integration of Oracle E-

Business Suite and Oracle

Application Development

Framework (ADF) Applications

https://metalink.oracle.com/metalink/plsql/show

doc?db=NOT&id=1296491.1

Conclusion

In conclusion, transitioning from Oracle Forms to ADF was overwhelming, time

consuming, always challenging, sometimes frustrating; however, the most important

thing to remember is that it is possible. My journey started with no knowledge of ADF.

It continues with spending hours exploring the internet to find documentation and videos

to assist in my understanding of ADF, countless attempts to build a single application that

would work from end-to-end, to attending ADF design meetings where I would write

down five to ten ADF concepts or terms that I need to research after each meeting, to

building my first application where I need ask ten “how to” questions of day, to building

an application on my own and concluding with supporting that application in a

production environment.

I wrote write this paper because I know there are other Oracle Forms Developers that still

need to take on this journey and I want to provide a high level how-to guide. Secondly, I

wanted to share some of the great references that helped me gain my understanding of

ADF. My understanding of ADF grows daily and it has been nine months since I started

http://www.quovera.com/whitepapers/downloads/rmoug_2012_deployment_doc.pdf
http://www.quovera.com/whitepapers/downloads/rmoug_2012_deployment_doc.pdf
https://metalink.oracle.com/metalink/plsql/showdoc?db=NOT&id=1296491.1
https://metalink.oracle.com/metalink/plsql/showdoc?db=NOT&id=1296491.1

A Developers Journey from Oracle EBS Forms to Oracle EBS ADF Pages

COLLABORATE 13 Copyright ©2013 by Thomas Korbecki Page# 53

my journey and I have to say that I just scratched the surface of ADF’s capabilities, so be

patient and take that first step into the world of ADF.

